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Abstract-A general variational equation is proposed for the study of the linear stability of non-isothermal 
stationary fluid flows. It is shown that the Euler-Lagrange equations of the variational criterion are the 
Orr-Sommerfeld relations of the stability problem. The general theory is applied to two specific examples. 
Firstly, the isothermal Poiseuille flow between two infinite parallel planes is considered; by using the 
self-consistent technique introduced by Glansdorff and Prigogine, the critical Reynolds number is found 
to be of the same order of magnitude as the values obtained by other authors. As a second example, 
one studies the consequence of a temperature dependent viscosity on the stability of a plane Couette 
flow. It is shown that for certain values of the parameters, the flow becomes unstable. Our results are 

compared with those of Sukanek et al. who were, to our knowledge, the first to treat this problem. 

NOMENCLATURE 

constant in equation (5.3); 
constant variational parameter; 

matrix defined by expression (4.8); 
matrix appearing in the characteristic 

equation (5.10) and defined in appendix; 
constant in equation (5.3); 

constant variational parameter; 
matrix defined by expression (4.9); 

Brinkmann number; 
stability parameter; 

specific heat at constant pressure; 
matrix defined by expression (4.10); 
matrix defined in appendix; 

constant variational parameter; 
derivation operator defined as d/dXz; 

constant in equation (5.3); 
constant variational parameter; 
trial function; 
Helmholtz free energy per unit volume; 
ith component of the body force; 
dimensionless viscosity; 

half distance between the plates; 
functional submitted to variation; 
unit matrix; 
ith component of the heat flux vector; 
kinetic energy per unit volume; 
Orr-Sommerfeld linear operator; 
Lagrangian density; 
phenomenological coefficient; 
matrix defined in appendix; 
phenomenological coefficient; 
matrix defined in appendix; 
matrix defined in appendix; 

Pg 
. 
P. 

Pia 

p, 
p’, 

P 

PX 

9iz 

R, 

R’, 

RC, 
s,, 
4 
T, 
T’, 

x> 
uia 

pressure; 
perturbation pressure amplitude; 
trial function; 

dimensionless pressure; 
matrix defined in appendix; 
Peclet number; 

Prandtl number; 
trial function; 

Reynolds number; 
matrix defined in Appendix; 

critical Reynolds number; 
entropy per unit volume; 
time; 

temperature; 

matrix defined in appendix; 
Chebyshev polynomial; 

ith component of the dimensionless velocity 
vector; 

perturbation velocity amplitude; 
internal energy per unit volume; 

u,[T,p], Legendre transform of u,, with respect to T 
and p; 

u, 
U’, 

ui, 

Kj, 

W, 

stationary axial velocity component (U = uz); 
matrix defined in appendix; 
ith component of the velocity vector; 
rate of deformation tensor; 
amplitude of the velocity perturbation 
u;(w = 22); 

Xi7 

xi, 

Yi, 

Y, 
655 

space coordinate (x1, axial coordinate; 
x2. vertical coordinate); 

dimensionless space coordinate; 
space coordinate; 
dimensionless space coordinate (Y = X,). 
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Greek symbols 

wave number; 
critical wave number; 
positive constant in equation (3.4); 

variational operator; 

Kronecker symbol; 
first order deviation with respect to the un- 

perturbed state; 

quantity equal to gDiJ; 
shear viscosity; 
dimensionless temperature; 

temperature perturbation amplitude: 

quantity equal to iffft; 

heat conductivity; 
roots of equation (4.6); 
Lagrange multiplier; 

chemical potential; 

pressure tensor; 
density; 
entropy production per unit time and 

volume: 
dimensionless time; 
general solution of the Orr-Sommerfeld 

equation; 
heat diffLlsivity; 

energy dissipation potential; 

volume. 

Subscript 

0. non-varied quantity during variation. 

Superscript 

* 

T. 

reference quantity; 
small deviation with respect to the stationary 

reference state; 
transposed quantity. 

1. INTRODUCTION 

RECENTLY, there has been considerable interest in 
approaching the problem of hydrodynamic stability 
by variational methods [I-7]. 

Lee and Reynolds [I] consider the linear stability 
of plane parallel stationary flows in bounded domains; 
all the fluid parameters like density, heat conductivity 
and viscosity are taken constant while no temperature 
gradients were imposed on the boundaries. The tem- 
perature effects being neglected, the problem is com- 
pletely determined by the Orr-Sommerfeld equation 
for the velocity disturbance. Let us write it in the 
general form 

J??4=0 (1.1) 

where 2 is the Orr~Sommerfeld linear operator and 
# the velocity disturbance. Calling $* the solution of 
the adjoint problem 

y*f#J* LI 0” (1.3) 

Lee and Reynolds use as variational equation 

r 

F? 
61=6 4*Ya,dq’=O. 

V’YI 

It is easy to verify that one recovers (1.1) and (1.2) as 
Euler-Lagrange equations. Lee and Reynolds have in- 

vestigated the stability of the plane Couette, the plane 
Poiseuille and the jet flows. With relatively simple trial 

functions, they obtain very accurate results. 

Glansdorff and Prigogine [2] have established a 
general variational criterion, based on the concept of 

local potential, to calculate the onset of instability in 

fluids in motion. More general than the theory of Lee 
and Reynolds, temperature effects are now taken into 

consideration. It is shown that the local potential is 
an extremum when the linearized Orr-Sommerfeld 

equations for the velocity and the temperature per- 
turbations are satisfied. Glansdorff-Prigogine’s theory 

has been widely and successfully applied by Platten 
[3,4], Schechter, Prigogine and Wamm [5], Schechter 

and Himmelbau [6], Butler er al. [7]. 
Recently, Lebon and Lambermont [S, 91 generalized 

the classical principle of Hamilton to hydrodynamics. 
The purpose of this work is to extend their results to 

the problem of hydrodynamic stability. 
In Section 2. a general variational principle for the 

stability problem is established. It is shown that the 
Euler-Lagrange equations are identicai with the set of 
the first order perturbed conservation equations. Ex- 

panding, as is usually done, the disturbances in terms 
ofnormal modes. another expression for the variational 
criterion is derived whose Euler-Lagrange equations 
are the Orr-SommerfeId relations. The particular ex- 
pression of the criterion for plane parallel flows is given 

in Section 3. 
As an illustration, the stability of the plane Poiseuille 

flow is investigated (Section 4). Choosing the functions 
of Chandrasekhar [lo] and Reid [l l] as trial func- 
tions. the critical Reynolds number and the critical 
wave number are calculated. They are found to be in 
good agreement with recent results obtained by Orszag 
[12] and Chock and Schechter [13]. 

As a further application, the Couette motion between 
parallel plates is treated in Section 5. For constant 
density, heat conductivity and viscosity, it is well known 
[14-171 that the Bow is always stable at any value of 
the Reynolds number. However, if the fluid charac- 
teristics are made temperature dependent so that the 
velocity profile of the stationary flow presents a point 
of inflexion, instability may occur [ 181. 
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In particular, this condition is fulfilled when the 

viscosity is assumed to decrease exponentially with the 

temperature. The influence of non-constant viscosity 

on the stability of the temperature and velocity dis- 

tributions has been studied by Joseph [19,20] and 
more recently by Sukanek, Goldstein and Laurence 
[21]. Like them, an incompressible fluid with constant 

heat conductivity and temperature exponentially de- 

creasing viscosity is considered. The eigenvalue prob- 
lem is solved by means of the self-consistent technique 

while combinations of Chebyshev functions are used as 

trial functions. A comparison between our results and 
those of Sukanek rr al. is given in Section 5. 
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quantities are defined by 

Fj = *&6ij+ Kj, (2.7) 

71ij = &dij+?tij, (2.8) 

with 

p=$.. II 

The phenomenological laws inferred from (2.6) are 

given by 

2. A VARIATIONAL CRITERION FOR THE 
STUDY OF HYDRODYNAMIC STABILITY 

2.1 LebonpLambrrmont’s variational critrrionfor hydro- 

dynamics 

Let us briefly recall some definitions and introduce 

some notations. 
According to the local equilibrium hypothesis [2], 

the Gibbs relation for a one-component fluid is given by 

du,= Tds,,fpdp; (2.1) 

u, and s, are respectively the internal energy and the 

entropy per unit volume, T is the Kelvin temperature, 
p the density and ,U the chemical potential. 

The Legendre transform of u, with respect to T and 

p is defined as 

u,[T,p]= uV-Ts,-pp. (2.2) 

In virtue of Euler’s relation, this quantity is just the 
thermodynamic pressure, p. By differentiation, one gets 

du,.[T,p] = -dp = -s,.dT-pdp. 

Let us also introduce a Lagrangian density 

L = k-u,[T,p.], 

where 

(2.3) 

(2.4) 

k = ipvivi (2.5) 

is the kinetic energy per unit volume and Vi the ith 
Cartesian component of the velocity; from now on, the 
Einstein convention of summation on repeated indices 
will be used. 

According to the theory of irreversible thermo- 
dynamics [2,9], the energy dissipated per unit time and 
volume inside the viscous fluid is expressed by: 

TO = -J<(ig)- Tiiij(i flj), (2.6) 

0 is the entropy per unit time and volume, Ji the ith 
component of the heat flux vector, qj the deviatoric 
part of the rate of deformation tensor and 7iij the 
deviatoric part of the pressure tensor; those latter 

HMT Vol.17.No.6-C 

J,  = _ M(T) 2T 
I 

T dxi’ 

jQj zz - N(T) p.. 
7 ‘J’ 

(2.9) 

(2.10) 

the phenomenological coefficients M and N are related 
to the heat conductivity coefficient I and the shear 

viscosity TV respectively by 

M(T) = Ti(T), (2.11) 

N(T) = T%/(T). (2.12) 

Introducing the so-called energy dissipation potential 

$ = +Ta, 

one obtains after substituting (2.9) and (2.10) in (2.6): 

(2.13) 

Consider now a fluid flowing through a fixed volume 

Q during a time interval tl - tZ, let Fi be the body force 
per unit volume acting on the particles of the fluid. 

Lebon and Lambermont have shown that the non- 
stationary flow obey the following variational equation : 

dQdt = 0. (2.14) 

The variations are to be taken with respect to the 
independent intensive variables /*, L’i and T; 6 is the 
variation symbol, where d, and 6, mean that the 

derivatives relative to time and space respectively are 
to be kept fixed during the variational procedure. 

Similarly, the density p = p(p, T) appearing in the 
expression (2.5) for k as well as kO appearing in the 
third integral are to be held fixed during variation. 
These quantities are supposed to correspond to the 
presumed but not determined exact solution ,uco, vi0 
and TO and therefore, their variations are necessarily 
equal to zero. However, at the end of the procedure, 
all the quantities are unmasked and the subsidiary 
conditions 
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are used. With the help of these relations, it has been We are now in position to formulate the variational 
shown [9] that the Euler-Lagrange equations cor- criterion describing the perturbed motion. It states that 
responding to arbitrary variation of p, ar and T are 

q just the following equations of mass, impulse and *2 6 f 
energy balance: SJ t, 

n i (A’L) dt dR+G, 
f2 

SI 
’ [A’(Ltji)l dt da 

t, o r!xi 

?p * 

Ir= ,, -5 (Pui), (2.15) +6 

g(Pui) = k,-$&(nij+PuiujJ, (2.15’) together with the subsidiary conditions 
’ .I 

r7 
-SC = -~~-$nrjflj-&(nis~). (2.15”) 

p’ = pb, f,l; = &, T’ = T; (2.25) 

?t 1 
where index 0 refers to the exact perturbed solution. 

I 

It must be pointed out that expression (2.14) is only 
The quantities to be varied independently are p’, 0; and 

valid for prescribed values of the intensive variables 
T’. The Euler-Lagrange equations corresponding to 

11, T and ri at the boundary. For more general 
arbitrary variations of these parameters restitute the 

boundary conditions, the reader is referred to [9]. 
first order disturbed balance equations of mass, im- 
pulse and energy, i.e. 

2.2 A variational criterion for linear stability 
The stability of the stationary motion can be studied 

ip’ (11,; i;?. 
-= (2.26) 

by modifying slightly the variational principle (2.14). c:t -Pz-P’ ;I, (‘-Xi 

A distrubance of the state parameters p, ui and T c:t,; 

in the stationary state gives rise to a change of the ph+l?ig=F/-$ 

Lagrangian L. Expanding it in Taylor serie, one gets 
(‘Xi 

Lr?Clt,,rhCd - L\tat,onal-y = AL +; A2L + 

(~~j+p’L’~I~j+pUICj+pt:iL~;). (2.27) 

(7 1 ?J; T’ ?Ji 1 

where the symbol A represents the first order deviation 
Ps; = -_P+t____7.7L;j~j 
i;t T 2~ T2 ix, 

with respect to the reference stationary state; it must 
not be confused with the variation operator 6. - ~ 7IijF;+ ~Rij~j- ~~~(ois;+S~,O~). (2.28) 

In virtue of the definition (2.4) of L, one has 

AL = Ak - Au,(T, p), (2.16) 
Moreover, when the phenomenological coefficients M 

and IV are temperature dependent, their disturbance 
A2L = A’k-A2u,(T, p). (2.17) must be kept constant during variation, i.e. 

Representing by an upper prime a disturbed quantity bM’ = 6N’ = 0. (2.29) 

of the first order, 
It must also be pointed out that the criterion (2.24) 

g = gperr -gstat. (2.18) has been formulated for fixed values of the disturbances 

it is easy to verify that: p’, vi and T’ at the boundary; in fact. this is the most 

Ak = p~~~;+~v~p’, (2.19) 
frequent situation met in practice. 

If thefluid is incompressible, the density p is constant 

A2k = p(DI)* + 2~ip’U: (2.20) and the Gibbs equation reduces to: 

and da, = T ds, (2.30) 

Au,(T,p) = -s,T’-p/i, (2.21) The Legendre transform with respect to T 

A%,(T, p) = - s:.T’ - p’p’. (2.22) u,(T) = ur- Ts,. 3 f;. (2.31) 

We also need the explicit expression of A’@. From 
(2.13) we obtain 

is called the Helmholtz free energy per unit volume ,/;,. 
The Lagrangian density L is now given by 

X 
i 

2~jNC+Nfl>-3N~~j (2.23) 
’ 1 

L = k-,f;.. (2.32) 

Another consequence of incompressibility is that the 
components of the velocity disturbance are no longer 
independent but linked by 

(2.33) 
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Therefore, expression (2.24) of the variational principle 

has to be modified in the form: 

f2 

6, SJ a(A2L)dfidt+S, 
1, nat 

where &,(x1, t) is a Lagrange multiplier. 

3. STABILITY OF FLUID FLOWS BETWEEN 
PARALLEL PLANES 

3.1 The perturbed equations of motion 
Consider a Newtonian liquid in motion in the 

direction x1 between two infinite planes normal to the 

x2 direction and separated by a distance 2 h. The 
origin of the coordinate system is located halfway 

between the two plates. The density and the specific 

heat of the fluid are assumed constant. 
In terms of the heat conductivity I(T) and the 

shear viscosity q(T), the phenomenological equations 

(2.9) and (2.10) can be written as follows: 

Ji = -A(T) g (Fourier’s law), 
, I 

(3.1) 

(Newton-Stokes’ law). (3.2) 

As most liquids are characterized by a constant heat 
conductivity and an exponential dependence of the 
viscosity with respect to the temperature, we shall take: 

/1 = constant, (3.3) 

q = q*exp cc(TF*T*) , ( > 
p is a positive constant and q* is the viscosity at the 

reference temperature T*. 
As in Section 2, let p, T, vi be the solutions of the 

basic stationary flow and p’, T’, vi be small deviations 
from this state. For convenience, we introduce the 
dimensionless quantities 

and the characteristic numbers 

(Brinkmann’s number), 

R = 7 (Reynolds’ number), 

P 
c 

= pc,u*h 1 (Peclet’s number), 

u* is a reference velocity, for instance the relative 

velocity of the plates in the Couette flow and cp the 

specific heat at constant pressure. 

The linearized expressions of the perturbed mass, 

momentum and energy balance equations are respec- 
tively: 

a 
- ui = 0, 
C?Xi 

(3.7) 

all; au; ZP’ 
~+llj~+li~~= -- 

I I 8Xi 

+;{&(g(~+&+o+~))]> (3.8) 

af? ^+.jg+,““=LL ao’ 
CT I ( > C'Xj P, aXj aXj 

In the applications treated in this paper, the solutions 

of the basic stationary flow are of the form 

u1 = ul(Xz) = U, u2 = 0 and 0 = 0(X2). (3.10) 

3.2 The variational equationfor the perturbed equations 
of motion 

When temperature effects are neglected, Squire [22] 
has shown that, for incompressible and isoviscous 

fluids, it is justified to limit the stability analysis to 
two-dimensional disturbances. This result was ex- 

tended to compressible but still isoviscous fluids by 
Lin [23]. In the case of a variable viscosity, Sukanek 

et al. [21] have proved that Squire’s theorem is valid 
when applied to the momentum equation but fails for 

the energy equation. Consequently, a correct analysis 
should be conducted by considering three dimensional 
perturbations. However, it appears from the works of 

Goldstein [24] and Sukanek et al. [21] that, at least 
for the Couette flow, the modes associated with the 

energy equation are the most stable. Therefore and 

also because the greater numerical complexity of the 
three dimensional problem, we shall restrict ourselves 
to the two dimensional case. It follows that the dis- 
turbances p’, uf and 0’ will be of the form 

with u; = 0. 

f’ = f’W1, x2,4 (3.11) 

Prescribing the temperature and the velocity dis- 
turbances at the boundary, expression (2.34) of the 
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G. LEBON and HUNG NGUYEN 

yields the perturbed balance equations, it is more 

convenient to buiid up a principle which gives the 
Orr-Sommerfeid relations. This procedure reduces the 

number of independent variables from three to two, 

for instance ziz and 8’. It rests on the expansion of 
the quantities ~dj(i = 1,2). @‘and p’in the following form: 

in this expression, we have for simplicity omitted all 
the terms giving a zero contribution to the Euler- 

Lagrange equations. It can be seen that the latter are 

Ul = tii(Xz)eXp(il(Xi -CT)), (3.14) 

8’ = 0(X2)exp(ia(X1 -CT)), (3.15) 

p’ = li(Xz)exp(iu(Xi - ct)). (3.16) 

According to the mass balance equation (3.7) the 
amplitudes u^i and C2 are related by: 

i dill 

or, in a more convenient form. 

(3.17) 

iii =cDW where D=d& and W= G2. (3.18) 
r 2 

Using (3.13) and substituting (3.14) to (3.16) in (3.12) 
gives an expression depending on tii, fz, j? and 0. 
Eliminating j and G1 by means of equations (3.8) and 
(3.17) and introducing the new set of variables 

O=ic&, <=gDU and Xz=Y (3.19) 

yields finally the following expression for (3.12): 

-2DWD[g(D2Wo+aZWo)] 

-QWD(&,D[) dY = 0. (3.20) 

identical with the equations (3.8) and (3.9) when the After making use of the subsidiary conditions: 

subsidiary conditions 

are introduced. The continuity equation (3.7) is not and taking the variations with respect to W and 0 
obtained but is used as a subsidiary condition to respectively, one obtains the following Euler-Lagrange 
determine the value of &,, it is found that equations : 

AL = -p’. (3.13) 

lt must be observed that if it is desired to obtain the D2(gD2 W) - 2a2D(yD W) + “‘(D’g) W 

continuity equation as an Euler-Lagrange equation, it +Cr4gW+iaR(DZU)W-iaR(U-c)(D2-a2)W 

suffices to vary (3.12) with respect to AL. 
i- (D2 +n’)(@{) = 0, (3.21) 

3.3 The z:u~~~t~~~ul ~~l~~fjon for the ~~~-S~~~~~~~~ld 

rrlff timis 
(D’--‘)O-~B,OL>U-iaP,(‘-coo 

Instead of constructing a variational criterion which - iaP, WDO - 2jB,(D2 + nZ) w = 0 (3.22) 
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which are the Orr-Sommerfeld equations of the 
problem. 

The complete solution is obtained by adding the 
boundary conditions: 

W=DW=O=O at Y=+l. (3.23) 

3.4 Formulation of the eigenvalue problem 
To obtain an approximate solution of the stability 

problem, the self-consistent method proposed by 
Glansdorff and Prigogine [2] will be applied. This 
procedure is a generalization of Rayleigh-Ritz’s tech- 
nique. Like this one, the self-consistent method is 
closely related to the Galerkin’s method [25,26] and 
is even equivalent when the trial functions are linear 
expressions of the form 

where the ais are unknown constants while the J’s are 
given a priori and satisfy the boundary conditions. 

Returning to the Euler-Lagrange equations (3.21) 
and (3.22), let us assume that their solutions are 
approximated by 

W= i aifi(Y), 

i=l 

(3.24) 

W, = i aioJ(Y), 

i=l 

(3.24’) 

0 = jj djpj(Y), 
j=l 

00 = f djOpj(Y). 
j=l 

(3.25) 

(3.25’) 

According to the self-consistent technique, W and W0 
(respectively 0 and 00) are taken to have the same 
dependence with respect to the independent variable Y; 
the functions A and pi constitute a complete set of 
functions obeying the boundary conditions of the 
problem, i.e. 

fi = DJ = 0 and Pj = 0 at Y = &- 1, (3.26) 

the ais and the dj’s are the unknown constant coeffi- 
cients. After substituting the trial functions in expres- 
sion (3.20) of the functional I, the a:s and bcs are 
determined by the stationary conditions: 

aI(ai, aio, dj, dj0) 

dai 
=0 i=l,...,n, (3.27) 

aI&, aio, dj, djo) 
adj 

=0 j=l,...,n. (3.28) 

After that all the derivations have been performed, 
index 0 is dropped and one is left with a system of 

n + m homogeneous equations which can symbolically 
be written as: 

(A-~1). T, =0 
0 

(3.29) 

A is a matrix whose elements are made up of com- 
bination of integrals of fi and pj, I is the identity 
matrix while a and d are vectors with components 
al,. , a, and dl,. , d, respectively. Non trivial solu- 

tions of (3.29) exist if and only if the secular equation 

det(A - cl) = 0, 

so that we are faced with an eigenvalue problem. 
According to (3.14)-(3.16) the flow is unstable if the 
imaginary part, ci, of c is positive. In the next section, 
we apply the foregoing analysis to two specific 
examples: the isothermal plane Poiseuille flow and the 
plane Couette flow with variable viscosity. 

4. THE ISOTHERMAL POISEUILLE FLOW 

In order to test our numerical methods, we first treat 
the problem of the stability of a Poiseuille flow between 
two infinite parallel planes at the same temperature. 
All the fluid characteristics like density, heat conduc- 
tivity and viscosity are supposed constant. Moreover, 
the temperature perturbations are assumed to be 
negligible. 

Under these restrictions, the functional (3.20) re- 
duces to: 

+1 
I= 

s i 
i&(U--c)(cz2WoW+DWDWo)- WoDUDW] 

-1 

-;(D’W)‘-2DWD(D2W0+~*W0) dY (4.1) 
1 

with 

u= 1-y*. (4.2) 

The Euler-Lagrange equation resulting from arbi- 
trary variations of W is the well-known Orr-Sommer- 
feld relation 

(o*-E*)*w 

-icrR[(U-c)(D*-c?)W- WD*U] = 0. (4.3) 

Let us expand Wand W. in the form 

W= i &A(Y) Wo = i C&o&(Y) (4.4) 
i=l i=l 

where thefi’s are orthogonal functions used earlier by 
Reid and Harris [ 1 l] and Chandrasekhar [lo]. The J’s 
are solution of the eigenvalue problem : 

(D4fA4)fi=0 A(_tl)=Dfi(*l)=O 
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The imaginary part of the eigenvalues has been 

1;:= 
cosh(&Y) cos(R,Y) 

cash Ai cos li 

whet-e the i,,‘s are the roots of 

tanh i, + tan I, = 0. 

calculated for 0.5 <c z < I.5 and 100 < R < 50000. The 

(4.5) number of terms in the expansion (4.4) has been 

Iimitated to II = 17. In Table 1 are reported the results 

corresponding to R = 250 and R = 3000 with in both 

(4.6) 
casesr = 1. 

The orthogonality conditions satisfied by the,fls are +* 
.fi(Y),f~(Y)dY= 26ij ~, 

After rather long and fastidious but elementary 

manipulations. one obtains the following secular 

equation: 

where A, B and C are square matrices whose elements 
are given by: 

Ai, = X4F$‘+2aZFjf1 +Fi\2+~2(E;I:o-I;jo) (4.8) 

B.,=: a21P?0+T/!‘-~!.0 II 1, 1, 1, (4.9) 

c =: ~2p+j7!. 1.1 1, 1, (4.10) 

with 

Table 1. Convergence of the imaginary part ci of the 
stability parameter 

r=l.R=250 a = I. R = 3000 

n (‘, II (‘2 

2 -0.084652 
3 -0.134329 
4 -0.101212 
5 -0.102684 
6 -0.103787 
7 - 0. I 04066 
8 -0.104153 
9 -0~104190 

10 -0.104209 
II -@lo4228 
12 PO.104223 
13 -0.104230 
14 -0.104230 
15 -0.104227 
16 - 0. I04244 
17 -0.104295 

2 -0~007130 
3 -0.014451 
4 -0.027913 
5 - 0.0652~3 
6 + ~~8~~ 
7 + 0.008 164 
x + 0~003589 
Y - oGo2 149 

10 - OGO6694 
11 - 0.0092 11 
12 -0.010085 
13 - 0.010222 
14 -0.010272 
15 -0.010287 
16 -0~010420 
17 -0.010364 

The convergence is satisfactory as long as R does not 

exceed 6OOO. For higher Reynolds numbers, the results 
become less accurate. 

where fi” stands for d”‘/dY” (n = 1.2) while ,fi” rep- 
Some particular values of R and c, giving neutral 

resents the function 5 itself. 
stability as a function of c( are reproduced in Table 2; 

Integrals are determined numerically by the Gauss 
for comparison, the results obtained by Chock and 

procedure. The inverse of the matrix C is evaluated by 
Schechter [13] using the RungeeKutta technique are 

means of the Gauss-Jordan technique while the eigen- 
also listed. It is seen that the results are very similar. 

values are obtained by using the Q.R. algorithm. All 
It is found that the critical Reynolds number R, and 

the comoutations are oerformed on the IBM 370 com- 
the critical wave number M, are respectively given by 

puter of the University of Liege. R, = 5727.2 z, = 1.02. 

Table 2. Values of R and c, corresponding to neutral stability as a function of the 
wave number r and comparison with the results of Chock and Schechter [ 131 

R 
5: 

Lebon--Nguyen Chock-Schechter Lebon-Nguyen Chock-Schechter 

0.9 6969 6965.25 0.240246 0.240812 
1 5770 58 14.83 0.26 1066 0.261233 
1.02 5727.2 5772.26 0.263465 0.263936 
1.02I 5727.5 5772.25 0.26388 0.264053 
I.022 5728 577547 0.26400 0.264168 
l-026 5732 577561 0.264414 0.264607 
1.05 5889 5889.97 0.265853 0.266418 
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Table 3. Critical Reynolds and wave numbers obtained by different authors 
__..__- 

Method R, a, 
-_.- ._ _.. “..__ 

Thomas [27] Finite difference 5780 1.026 
Orszag [ 121 Chebyshev polynomial 

expansion 5172.22 1.02056 
Chock and Schechter [13] Runge-Kutta 5772.225 1.0205 
Platten [3] Local potential 

variational technique 5600 < R, < 5900 -1 
- 

Values proposed by other authors are presented in 

Table 3. The comparison with our values reflects a 
very good agreement. In particular, it appears that our 
results are better than those of Platten, although in 
both cases the self-consistent method was used. How- 
ever, this is not surprising because both of the analyses 
differ by the expressions of the functionals I1 by the 
choice of the trial functions and by the numerical 
methods to determine the eigenvalues. 

5. THE PLANE COUETTE FLOW WITH 

TEMPERATURE DEPENDENT VISCOSITY 

The fluid moves between two plates in relative 
motion with a constant velocity G’*. Both plates are at 
the same temperature. The density and the heat con- 
ductivity of the fluid are constant while the viscosity 
depends on the temperature according to the ex- 
ponential law (3.4). 

The solutions of the basic stationary flow equations 
are [28] : 

where 

0 = /I+ ln(a sech’ b Y). 

U = f( 1 + e tanh by). 

(5.1) 

(5.2) 

o=l+$, h=sinh-’ 

The momentum balance equation yields 

gDU = i = constant. (5.4) 

Moreover the maximum shear stress which can be 
applied to the walls corresponds to a Brinkmann 
number equal to 18.152 [28]. 

- i(A’)-‘A’ (AZ)-‘B’ 

-(B3)-IA3 - i(B3)- ‘B2 

- i(C3)-‘(C’)T (C3)-‘B4 

-(D“-IA4 -i(D4)-‘(D’)* 

The variational equation to be considered is given 
by the general expression (3.20) wherein the last term 
must be dropped according to (5.4). 

For the trial functions W and 0, we choose linear 
combination of the Chebyshev polynomials T. In order 
to satisfy the boundary conditions (3.26); we take: 

W = i aif&Y) +- i bigif Y) 
i=l i=l 

0 = i dipi + ‘$ eiqi(Y) 
i=l i=l 

(5.5) 

(5.6) 

and likewise for W. and O,,, with 

T,+yT,, (5.7) 

9i = Tzi+2-(i+l)2Tzf[(i+1)2-1]T~, (5.8) 

Pi= Ei+l-G, tfi = T2.i - T* ; (5.9) 

it is easy to verify that 

and 

pi{ + 1) = qi( k 1) = 0. 

When Chandrasekhar-Reid functions are chosen for 
the velocity disturbance, the numerical procedure is 
unstable for values of B, smaller than 19, i.e. precisely 
in the physical region of interest. Therefore, we have 
taken Chebyshev pol~omials. Moreover, for uni- 
formity reasons, we have selected the same functions 
for the temperature disturbance. 

Introducing (5.5) and (5.6) in the expression (3.20) 
of the functional I and applying the self-consistent 
method, we obtain the characteristic matrix, 

- ;(A’)- ‘C’ 0 

0 - i(B3)-‘D’ 

- i(C3)_ %? (C3)- ‘Dz 1 
(5.10) 

(D4)- ‘(DZ)T -i(D“-ID3 ] 
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Table 4. Convergence of the imaginary part ci of the stability parameter 

;(=I P” = 1 

B, = 1 B,= 10 B, = 40 

R = l@OOO R = 4@000 R = 5.000 

\--~----. -- \ 
‘\ 

(‘i 

‘\ 
n ‘1~ 

R = 20.000 R=8 R=9 

2 - 0.00353 - 0.00088 + 0.00353 +0~00115 f0.05164 + 0.08727 
3 +0.00152 + 0~00030 + 0.00675 + 0.00276 -0.09773 + 0.06057 
4 + 0.00291 + 0.00364 - 0.00434 + 0.00364 -0.04726 + 0.04927 
5 -0.00181 + 0.00462 - 0.02369 + 0.00394 - 0.0229 1 + 004928 
6 -0.00191 + 0.00048 -0.01308 + 0.00295 -0.02031 + 0.04947 
7 -0~00281 + 0.00761 - 0.02666 + 0.00306 - 0.02056 + 0.04950 

Table 5. Values of R and z giving neutral stability for various assigned values of B, and P, 

B, = 1 B,= 5 B,= 15 

P, = 1 P, = 5 P, = 10 P” = 1 P, = 5 P,=lO P, = 1 P, = 5 P,=lO 
__ 

-3 

0.6 
0.8 19530 
0.9 17850 
1 16580 
1.1 15605 
1.2 14870 
1.3 14330 
1.4 13955 
I.6 13665 
1.7 13760 

11310 
9690 
9400 
9390 
9690 

10445 
12015 
13025 

9060 9415 
7650 7970 
7360 7665 
7290 7570 
7462 7680 
7975 8025 
9125 8670 

12030 9830 
12630 
12690 

superscript T denotes transposition, the explicit ex- 
pressions of the matrices A’, B’, C’ and D’ (i = 

1, 2, 3, 4) in terms of the functions A, gi, pi and qi are 
given in the appendix. The eigenvalues of this matrix 
are the parameters c of the stability problem; as above, 

they are determined by the Q -R method. 
When more than seven terms are used in the ex- 

pansions (5.5) and (5.6), the results lose any significance 
because of numerical instabilities. In Table 4 the values 
of ci are reported for some values of the parameters 
CI, P,*, B, and R. The convergence is not very satisfactory 
especially for low values of B,. Nevertheless, there is 
no problem to define unambiguously the stable (ci < 0) 

*P, is the Prandtl number; it is defined by 

P,zzP,R~‘= ‘* 
PX* 

where x * = 1.!oc, is the heat diffusivity. 

6470 6085 4700 
5270 4940 4615 
4950 4625 4595 
4750 4430 4550 
4670 4345 4530 
4715 4370 4490 
4915 4535 4560 
5360 4925 4770 
9300 8470 6030 

4275 4270 
4135 4070 
4130 4055 
3880 3805 
3720 3640 
3635 3555 
3635 3550 
3735 3645 
4515 4400 

and the unstable (ci > 0) region. For instance, it is clear 
that in the case B, = 10, the system is stable for 

R < 5000 and unstable for R > 2OMK). Likewise for 
B, = 40, it is seen that there is stability as long as 

R < 8 and instability for R 2 9. Of course. the latter 
case is purely academic since the maximum shear 
stress corresponds to B, = 18.152. 

Taking five terms in the developments (5.5) and (5.6) 

and fixing the Brinkmann and the Prandtl numbers, 
we have computed the Reynolds number corresponding 
to neutral stability for various assigned values of r 
(see Table 5). 

We have also derived the critical values of the 
Reynolds and the wave numbers for B, = 1, 5. 10. 15 
and 40 when the Prandtl number takes the values 1. 5 
and 10. Due to the lack of accuracy of the numerical 
procedure, these results must be interpreted as giving 
the order of magnitude. 
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Table 6. Critical values of R and a for various assigned 
values of B, and P, and comparison with the results of 

Sukanek et al. [21] 

Lebon-Nguyen Sukanek et al. 

B, P, R, re R, & 

I 1 13665 I.60 
5 9370 0.95 

IO 7290 1 
5 1 7570 1 

5 4670 1.10 
IO 4340 I.15 

10 1 5160 1.10 
5 3835 1.20 

10 3700 I.20 
15 1 4490 1.20 3500 0.96 

5 3625 1.25 3475 0.98 
IO 3540 1.25 

40 1 44 0.8 116 047 
5 47 0.8 68 0.65 

The results are reproduced in Table 6 together with 
those obtained by Sukanek et al. [21]. These authors 
expanded W in terms of the Chandrasekhar-Reid 
functions and 0 in terms of Fourier’s series; n was 
taken equal to four. It must however be pointed out 
that their expansion for 0 does not obey the boundary 
conditions O( If: 1) = O! Moreover, their characteristic 
matrix with complex elements is mapped into a real 
one by a suitable transformation operator. Due to 
numerical instability, Sukanek et al. were not able to 
compute R, and CI, for B, lower than 15. In our work, 
by using Chebyshev polynomials and working with 
complex variables, we extended this limit to B, = 1. 
Although our numerical values are different from those 
of [21], especially for B, = 40, we observe the same 
general tendency. For a fixed Prandtl number, the 
critical Reynolds number increases when the Brink- 
mann number decreases; at B, = 0 (non-viscous fluid), 
it is reasonable to expect that R, = co so that the 
system remains indefinitely stable. On the other hand, 
when the Brinkmann number is given, R increases 
generally when the Prandtl number decreases. 

6. CONCLUSIONS 

The purpose of this work was twofold: extend the 
variational principle of Lebon and Lambermont to 
stability problems and apply it to specific examples. 
The approximate solutions were obtained by using the 
self-consistent technique. Like any variational method, 
it is rather sensitive to the choice of the trial functions. 
For the isothermal Poiseuille flow, the amplitude of 
the disturbed velocity was expressed in terms of the 
Chandrasekhar-Reid functions; the solutions obtained 
converge quite well and are in fair agreement with 

those given by other authors. In the case of the 
Couette flow with temperature dependent viscosity, the 
disturbed velocity and temperature were expanded in 
terms of the Chebyshev polynomials. However, because 
of lack of convergence of the solutions, the neutral 
stability curves and the critical values of the parameters 
could not be determined with great precision. There- 
fore, concerning the Couette flow, our results must be 
considered as a first estimate. Nevertheless, in our 
opinion, our contribution may be useful in that it gives 
a general pattern for the flow and constitutes a first 
step for further studies of the problem. 

Acknowledgement-The authors wish to thank Dr. Lamber- 
mont for valuable remarks on the manuscript. 
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APPENDIX 

Qt = I_+,' ch%Y(D’&)(D:fi)dY 

Q$= +’ 

s 
ch’bY(Dj;)(DSj)dY 

-I 

Q;,= +’ 
I 

ch%Yf;f,dY 
-1 

Q; = 

5 
+ ’ (DfW.fi)dY 

-I 

+1 
Q; = f ~, fi.fidY 

I 
+1 

Pt: = th(by).fi(D*g,)dY 
-1 
+I 

c: = th(by)f,gjdY 
-1 

iI 
L;, = (D,fi)(DPj)dY 

1 

I?,, = T ’ f;p,dY 
-1 

N,: = J 1 (Dgi)(Dqj)dY 
-1 

i 

+I 

N$ = ~, giqjdy 

I 
fl 

s,: = th(by)pigj d Y 
-1 

s +t 
0,: = Pr+Wp,W Y 

-I 

0,: = 
+I 1 

_1 mPiPjdY 

+1 

0; = PiPjdY 
-1 

s +1 

R:, = th(by)piqj d Y 
-1 

+1 

r/i: = s Wy)qifjdY 
-1 

s +1 

zf = (Dsi)(Dqj)d Y 
-1 

s +1 

7;: = ~, qiqjdy 

A~,=~(Q~j+2~2Qi,+~4Q~~+4b’~z(Q~-Q~)) 

A; = aRB,(QP, + 2a2Q1!,) 

B!j=ZeB,uR ~P~-b’p&+p$ 
( > 

B$ = T (M,; +2a2M~+a4M,: +4b2c?(M$-M;) 

B,?, = aRB,(M$ +2aZM$) 

Bf, = -2ubP& 

A?j = ZctReB, 
( 

-;(P;)‘+b’(P,~)T+~p~ 
> 

A;: = ZbctP, Vi: 

C:, = ; B,(a2L$-L:,) 

C; = O~+a’O;+$B,O; 
+I 

M,; = chZbY(DZg~)(D2gj)dY 
-1 
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b2e2 
D?. = T’+r2T2+_B T? 

1, 1, 
4a r ” 

0;: = $ 7;;. 

STABILITE HYDRODYNAMIQUE PAR METHODES VARIATIONNELLES 

R&sum&On propose un principe variationnel general pour I’ttude de la stabilite liniaire des Ccoulements 
stationnaires et non-isotherme. On montre que les equations d’EulerrLagrange du critbe variationnel 
sont les relations d’Orr-Sommerfeld du probleme de stabiliti. La thtorie g&n&ale est appliquee a deux 
exemples. On considtre tout d’abord I’tcoulement isotherme de Poiseuille entre deux plans paralleles 
infinis: en utilisant la methode “self-consistent” de Glansdorff-Prigognine; on trouve un nombre de 
Reynolds critique du meme order de grandeur que celui obtenu par d’autres auteurs. Comme second 
exemple, on etudie la consequence d’une viscosite fonction de la temperature sur la stabilite d’un tcoule- 
ment de Couette plan. On montre que pour certaines valeurs de paramhtres, l’ecoulement devient instable. 
Nos rtsultats sont compares avec ceux obtenus par Sukanek et al. qui furent, a none connaissance, les 

premiers a traiter ce probltme. 

EINE STUDIE UBER HYDRODYNAMISCHE STABILITAT BEI vARIATIONSMETHODEN 

Zusammenfassung-Es wird eine allgemeine Variationsgleichung fur die Untersuchung der linearen 
Stabilitlt von nichtisothermen Fliissigkeitsstriimungen vorgeschlagen. Es wird gezeigt, da0 die Euler- 
Lagrange-Gleichungen des Variationskriteriums die Orr-Sommerfeld-Beziehungen des Stabilitltsprob- 
lems sind. Die allgemeine Theorie wurde auf zwei spezifische Beispiele angewandt. Erstens betrachtete 
man die isotherme Poiseuille-Stromung zwischen zwei unendhchen parallelen Platten. Man wandte die 
selbstkonsistente Technik an, die von Glansdorff und Prigogine eingefiihrt wurde und fand heraus, da13 
die kritische Reynolds-Zahl von der gleichen Grogenordnung ist wie Werte anderer Autoren. Als 
zwettes Beispiel untersuchte man den EinfluB einer temperaturabhangigen Viskositat auf die Stabilitlt 
einer ebenen Couettestromung. Es wird gezeigt, da13 fur gewisse Parameterwerte die Stromung instabil 
wird. Unsere Ergebnisse wurden mit denen von Sukanek verglichen. die unseres Wissens die ersten sind, 

die dieses Problem behandeln. 

MCCJIE~OBAHME I-MAPOAMHAMMYECKOti YCTOti’4MBOCTM 
BAPMAUMOHHblMM METOAAMM 

AwoTauHn - flpennoxeH0 o6tuee BapMauuoHHoe ypaBHeHMe nn~ M3yqeHw nMHeRwoA YCTOL~~MBOCTM 

Heu30TepMwecKux TerewiB W(~~KOCTM. nOKa3aHO. qT0 ypaeHeHw ZYinepa-flarpatixfa sapvauMoH- 

Hero KpcrTepHn npencTaBnnwT coGoR cooTHomew4fl Oppa-3orwep@enbna a 3anaqe 06 ycroRqu- 
BOCTH. 06qan TeopMfl npMMeHReTc8 K LIB~M VaCTHblM cnyranhi. B nepBoM cnyqae paccMaTpHBaeTcn 

M30TepMwecKoe TeqeHiie nya3eiinn Memy nsyrdn 6ecKoHeqHblMM napannenbHblw4 NIOCKOCTRMH. 

C noMombto MeTona caMocornacoBaww. npenno~enttoro KnaHcnop$oM H npHrOxHHblM, HaAaeHo, 

‘ITO KpwTnqecKoe qucno PeRuonbnca riMeer TOT xe nop51noK BenMwHbl, 9To M ero 3HaYetwifl. nony- 
qeutrhie npyruwi aBTopaMH. Bo BTOP~M cnyqae uccnenyercn anuatme B~~?KOCTM, 3aBctcnueA OT 

TeMnepaTypbl. Ha yCTOhiBOCTb nnOCKOr0 TeqeHMIl Ky3TTB. nOKa3aHO. ‘IT0 npLi HeKOTOpblX 3Haqe- 

HCISIX napaMeTpOB Te’,eHHe CTaHOBHTCIl HeyCTOihMBblM. Haum pe3ynbTaTbl CpaBHNBa,OTCR C QaH- 

HblMH CyKaHeKa M L,pyr‘,X. KOTOPble. n0 Halll‘.ZMy MHeHHtO. IIBnRK)T“R “epRbl\lM On~6nMKORaHHblMH 


