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Abstract— A general variational equation is proposed for the study of the linear stability of non-isothermal
stationary fluid flows. It is shown that the Euler-Lagrange equations of the variational criterion are the
Orr-Sommerfeld relations of the stability problem. The general theory is applied to two specific examples.
Firstly, the isothermal Poiseuille flow between two infinite parallel planes is considered; by using the
self-consistent technique introduced by Glansdorff and Prigogine, the critical Reynolds number is found
to be of the same order of magnitude as the values obtained by other authors. As a second example,
one studies the consequence of a temperature dependent viscosity on the stability of a plane Couette
flow. It is shown that for certain values of the parameters, the flow becomes unstable. Our results are
compared with those of Sukanek et al. who were, to our knowledge, the first to treat this problem.

NOMENCLATURE

constant in equation (5.3);

constant variational parameter;
matrix defined by expression (4.8);
matrix appearing in the characteristic
equation (5.10) and defined in appendix;
constant in equation (5.3);

constant variational parameter;
matrix defined by expression (4.9);
Brinkmann number;

stability parameter;

specific heat at constant pressure;
matrix defined by expression (4.10);
matrix defined in appendix;

constant variational parameter;
derivation operator defined as d/dX;;
constant in equation (5.3);

constant variational parameter;

trial function;

Helmbholtz free energy per unit volume;
ith component of the body force;
dimensionless viscosity;

half distance between the plates;
functional submitted to variation;
unit matrix;

ith component of the heat flux vector;
kinetic energy per unit volume;
Orr-Sommerfeld linear operator;
Lagrangian density;
phenomenological coefficient;

matrix defined in appendix;
phenomenological coefficient;

matrix defined in appendix;

matrix defined in appendix;
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pP»
D,
Pjs

P,
FPe,
P"’

ﬁi s
Uy,
u,[ T, 1],

Xi,
Vi,

pressure;
perturbation pressure amplitude;

trial function;

dimensionless pressure;

matrix defined in appendix;

Peclet number;

Prandt] number;

trial function;

Reynolds number;

matrix defined in Appendix;

critical Reynolds number;

entropy per unit volume;

time;

temperature,

matrix defined in appendix;

Chebyshev polynomial;

ith component of the dimensionless velocity
vector;

perturbation velocity amplitude;

internal energy per unit volume;

Legendre transform of u, with respect to T
and y;

stationary axial velocity component (U = u,);
matrix defined in appendix;

ith component of the velocity vector;

rate of deformation tensor;

amplitude of the velocity perturbation

uy(W = ii);

space coordinate (x;, axial coordinate;

X3, vertical coordinate);

dimensionless space coordinate;

space coordinate;
dimensionless space coordinate (Y = X).
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Greek symbols

o, wave number;

% critical wave number;

i positive constant in equation (3.4);

d, variational operator;

Sijs Kronecker symbol;

A, first order deviation with respect to the un-
perturbed state;

g, quantity equal to gDU;;

1, shear viscosity;

f, dimensionless temperature;

f, temperature perturbation amplitude;

Q, quantity equal to iafl;

7 heat conductivity;

Ais roots of equation (4.6);

Ar, Lagrange multiplier;

I8 chemical potential;

i, pressure {ensor;

o, density;

a, entropy production per unit time and
volume;

T, dimensioniess time;

¢, general solution of the Orr-Sommerfeld
equation;

7s heat diffusivity;

¥, energy dissipation potential;

Q, volume.

Subscript

0. non-varied quantity during variation.

Superscript

* reference quantity;

’, small deviation with respect to the stationary
reference state;
T. transposed quantity.

1. INTRODUCTION

RECENTLY, there has been considerable interest in
approaching the problem of hydrodynamic stability
by variational methods [ 1-7].

Lee and Reynolds [1] consider the linear stability
of plane parallel stationary flows in bounded domains;
all the fluid parameters like density, heat conductivity
and viscosity are taken constant while no temperature
gradients were imposed on the boundaries. The tem-
perature effects being neglected, the problem is com-
pletely determined by the Orr—Sommerfeld equation
for the velocity disturbance. Let us write it in the
general form

Lo =0 (1.1)

where & is the Orr-Sommerfeld linear operator and
¢ the velocity disturbance. Calling ¢* the solution of
the adjoint problem

LrP* =0, (1.2)

Lee and Reynolds use as variational equation
y2
ol =96 ( ¢*Fody =0.

vy
It is easy to verify that one recovers (1.1) and (1.2) as
Euler-Lagrange equations. Lee and Reynolds have in-
vestigated the stability of the plane Couette, the plane
Poiseuille and the jet flows. With relatively simple trial
functions, they obtain very accurate results.

Glansdorff and Prigogine [2] have established a
general variational criterion, based on the concept of
local potential, to calculate the onset of instability in
fluids in motion. More general than the theory of Lee
and Reynolds, temperature effects are now taken into
consideration. It is shown that the local potential is
an extremum when the linearized Orr-Sommerfeld
equations for the velocity and the temperature per-
turbations are satisfied. GlansdorfI-Prigogine’s theory
has been widely and successfully applied by Platten
[3.4], Schechter, Prigogine and Hamm [5], Schechter
and Himmelbau [6], Butler et al. [7].

Recently, Lebon and Lambermont |8, 9] generalized
the classical principle of Hamilton to hydrodynamics.
The purpose of this work is to extend their results to
the problem of hydrodynamic stability.

In Section 2. a general variational principle for the
stability problem is established. It is shown that the
Euler-Lagrange equations are identical with the set of
the first order perturbed conservation equations. Ex-
panding, as is usually done, the disturbances in terms
of normal modes, another expression for the variational
criterion is derived whose Euler-Lagrange equations
are the Orr—Sommerfeld relations. The particular ex-
pression of the criterion for plane parallel flows is given
in Section 3.

As an illustration, the stability of the plane Poiseuille
flow is investigated (Section 4). Choosing the functions
of Chandrasekhar [10] and Reid [11] as trial func-
tions, the critical Reynolds number and the critical
wave number are calculated. They are found to be in
good agreement with recent results obtained by Orszag
[12] and Chock and Schechter [13].

As afurther application, the Couette motion between
parallel plates is treated in Section 5. For constant
density, heat conductivity and viscosity, it is well known
[14-17] that the flow is always stable at any value of
the Reynolds number. However, if the fluid charac-
teristics are made temperature dependent so that the
velocity profile of the stationary flow presents a point
of inflexion, instability may occur [18].
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In particular, this condition is fulfilled when the
viscosity is assumed to decrease exponentially with the
temperature. The influence of non-constant viscosity
on the stability of the temperature and velocity dis-
tributions has been studied by Joseph [19,20] and
more recently by Sukanek, Goldstein and Laurence
[21]. Like them, an incompressible fluid with constant
heat conductivity and temperature exponentially de-
creasing viscosity is considered. The eigenvalue prob-
lem is solved by means of the self-consistent technique
while combinations of Chebyshev functions are used as
trial functions. A comparison between our results and
those of Sukanek er al. is given in Section 5.

2. A VARIATIONAL CRITERION FOR THE
STUDY OF HYDRODYNAMIC STABILITY
2.1 Lebon-Lambermont’s variational criterion for hydro-
dynamics
Let us briefly recall some definitions and introduce
some notations.
According to the local equilibrium hypothesis [2],
the Gibbs relation for a one-component fluid is given by

(2.1)

u, and s, are respectively the internal energy and the
entropy per unit volume, T is the Kelvin temperature,
p the density and g the chemical potential.

The Legendre transform of u, with respect to T and
u is defined as

du, = Tds,+udp;

2.2)

In virtue of Euler’s relation, this quantity is just the
thermodynamic pressure, p. By differentiation, one gets

uv[Tv :u]= Uy— Tsv—pﬂ'

du [T, p]l= ~dp = —s,dT—pdu 2.3)
Let us also introduce a Lagrangian density
L =k—u[T, 4, (2.4)
where
k = Spvw; (2.5)

is the kinetic energy per unit volume and v; the ith
cartesian component of the velocity; from now on, the
Einstein convention of summation on repeated indices
will be used.

According to the theory of irreversible thermo-
dynamics [2, 9], the energy dissipated per unit time and
volume inside the viscous fluid is expressed by:

16T (1 .
TG'=—J¢ ?'a*x*' *Tﬂ{j ?V;J N

¢ is the entropy per unit time and volume, J; the ith
component of the heat flux vector, ¥V; the deviatoric
part of the rate of deformation tensor and #;; the
deviatoric part of the pressure tensor; those latter

(2.6)
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quantities are defined by

Viy = §Vudi;+ Vi, 27
i = poi+ 1y, (2.8)
with
p=im;.

The phenomenological laws inferred from (2.6) are
given by

M(T) T
A ey 29
T é’xi ( )

. N(T) 5
;= ——’Tz— V;J, (210)

the phenomenological coefficients M and N are related
to the heat conductivity coefficient 4 and the shear
viscosity n respectively by

M(T) = TA(T),
N(T) = T(T).

Introducing the so-called energy dissipation potential

Y =3To,
one obtains after substituting (2.9) and (2.10) in (2.6):
IM[{éT\* I N . .
v =z?<?> Fap it

Consider now a fluid flowing through a fixed volume
Qduring a time interval t; —t,, let F; be the body force
per unit volume acting on the particles of the fluid.

Lebon and Lambermont have shown that the non-
stationary flow obey the following variational equation:

2oL 2 é
o, —dQdt+4, — (Lv;) dQ dr
n Jo ot n 4o 0x;

t> a ;
+o‘j J(w—ﬂvi+k0;i>d9dt=0. (2.14)
HhoJQ 0X;

The variations are to be taken with respect to the
independent intensive variables y, v; and T; § is the
variation symbol, where J, and §, mean that the
derivatives relative to time and space respectively are
to be kept fixed during the variational procedure.
Similarly, the density p = p(u, T) appearing in the
expression (2.5) for k as well as ko appearing in the
third integral are to be held fixed during variation.
These quantities are supposed to correspond to the
presumed but not determined exact solution po, vio
and T, and therefore, their variations are necessarily
equal to zero. However, at the end of the procedure,
all the quantities are unmasked and the subsidiary
conditions

(2.11)
(2.12)

(2.13)

o=pvo=v;and To =T
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are used. With the help of these relations, it has been
shown [9] that the Euler-Lagrange equations cor-
responding to arbitrary variation of w, v; and T are
just the following equations of mass, impulse and
energy balance:

% pn 2.15)
2t a0 @
2 2
’“(pvi) = Fi—f(n,-jﬂ-pviuj), (215’)
ct Ox;
2 Lok 1oL 0 e
=S = = Wb ise). (2.
ot Tox, T 0073508

It must be pointed out that expression (2.14) is only
valid for prescribed values of the intensive variables
i, T and v; at the boundary. For more general
boundary conditions, the reader is referred to [9].

2.2 A variational criterion for linear stability
The stability of the stationary motion can be studied
by modifying slightly the variational principle (2.14).
A distrubance of the state parameters u, v; and T
in the stationary state gives rise to a change of the
Lagrangian L. Expanding it in Taylor serie, one gets

1
chr!nrhcd - Lstalional‘y =AL + 5 AZL +

where the symbol A represents the first order deviation

with respect to the reference stationary state; it must

not be confused with the variation operator J.

In virtue of the definition (2.4) of L, one has
AL = Ak — Au,(T, p),

AL = A%~ A%u (T, w. (2.17)

Representing by an upper prime a disturbed quantity
of the first order,

g = Gpert. — Gstar. (2.18)
it is easy to verify that:
Ak = povi+30ip, (2.19)
A%k = p(v})* + 2v0:p'v (2.20)
and
Au(T, ) = —s.T' —py', (2.21)
A% (T, p) = —s,T'—p'y'. (2.22)
We also need the explicit expression of A%y. From
(2.13) we obtain
1 {éT" T'oT oT T’
R G
_3Mzal>+i<[7.c_z [7.)
Teéx) T2\Y T 7
X <2I7.»,»N'+NI7,<}—3N; I7i,->. (2.23)

(2.16),

We are now in position to formulate the variational
criterion describing the perturbed motion. It states that

t2 A L&} O
5,[ J :4(A2L)dtd9+6xj J%[AZ(Lvi)] drdQ
. Q 0 CX;

. ct I3

+5J J (Azl//—F{ka’o ii> drdQ =0, (224)
t Q CX;

1

together with the subsidiary conditions
(2.25)

where index O refers to the exact perturbed solution.
The quantities to be varied independently are y', v; and
T'. The Euler-Lagrange equations corresponding to
arbitrary variations of these parameters restitute the
first order disturbed balance equations of mass, im-
pulse and energy, i.c.

W= po.vi=vio, T' = Tg

ép' vy 0y
it Aol Uit (2.26)
it ox; Cx;
Cv} op’ .0
ey = F——
P o ot b
(T} + p'vw;+ poiv;+ pugrs),  (2.27)
¢ Lay T o 1 v
g = ML 7
ot’ Téx; T?6x, T VY

1 T ¢
._?TIUVU-FFTC,*J‘VU—?S\;(UI-S,U*'SUUE). (228)
Moreover, when the phenomenological coefficients M
and N are temperature dependent, their disturbance
must be kept constant during variation, i.e.

oM’ =N =0. (2.29)

[t must also be pointed out that the criterion (2.24)
has been formulated for fixed values of the disturbances
i, vi and T’ at the boundary; in fact. this is the most
frequent situation met in practice.

If the fiuid is incompressible, the density p is constant
and the Gibbs equation reduces to:

du, = Tds,. (2.30)
The Legendre transform with respect to T
u(TYy=t,—Ts, = f, (2.31)

is called the Helmholtz free energy per unit volume f,.

The Lagrangian density L is now given by
L=k-f. (2.32)

Another consequence of incompressibility is that the
components of the velocity disturbance are no longer
independent but linked by

(2.33)
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Therefore, expression (2.24) of the variational principle
has to be modified in the form:

5] 6 ty 6
5 j j~(A2L)det+6xJ f —[A? Lv;)]dQdt
t Q at Q Bxi

1 ty

vt

+5J J (A%p — Fivi+Ag(x:, 1) ~> dQdr=0, (2.34)
t Q

1 axi

where Ar(x;, ) is a Lagrange multiplier.

3. STABILITY OF FLUID FLOWS BETWEEN
PARALLEL PLANES

3.1 The perturbed equations of motion

Consider a Newtonian liquid in motion in the
direction x; between two infinite planes normal to the
x, direction and separated by a distance 2h. The
origin of the coordinate system is located halfway
between the two plates. The density and the specific
heat of the fluid are assumed constant.

In terms of the heat conductivity A(T) and the
shear viscosity #(T'), the phenomenological equations
(2.9) and (2.10) can be written as follows:

cT
Ji = —A(T)— (Fourier’s law),
0X;

(3.1)

. v
flij = —@ (60, +LUJ (Newton—Stokes’ law). (3.2)
2 an (‘}Xi

As most liquids are characterized by a constant heat
conductivity and an exponential dependence of the
viscosity with respect to the temperature, we shall take:

A = constant, (3.3)

_T*
I =y 64
f is a positive constant and #* is the viscosity at the
reference temperature T*.

As in Section 2, let p, T, v; be the solutions of the
basic stationary flow and p’, T', v; be small deviations
from this state. For convenience, we introduce the
dimensionless quantities

Xi v¥t Ui
Xi=v,1'=—h*, M.'=F,
4 "
0=Bf—P=—5,g=— (3.5
T prea " (3.5)
and the characteristic numbers
*yy%2
B.=p ST (Brinkmann’s number),
*h
R= pv* (Reynolds’ number),
n
*h
P, = 2272 (Peclet’s number), (3.6)
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v* is a reference velocity, for instance the relative
velocity of the plates in the Couette flow and ¢, the
specific heat at constant pressure.

The linearized expressions of the perturbed mass,
momentum and energy balance equations are respec-
tively:

i =0, 37
ax“ (3.7)
6u§+ 6u{»+ . Ou ap’
E— U; —— — = —
(?r }an ujan 6X,
1{¢ ou;  Ouj ou;  Ou;
—— + - , (38
+R{0X,-<g(axj 6X,> <6Xj+6Xi>>} (38)
6(9’+ 60’+ ,60_1 J (o
ot Yax, T Wex, T p.ox;\ox,
+B, 6u§+6u} 6u,~+6u,~
pI\ex, T ax \ox, T ax,
0w Ou;\ Cuy
O —+—=2)=—¢. (39
<6X,-+6X,->6X,} (39)

In the applications treated in this paper, the solutions
of the basic stationary flow are of the form

u; = ul(Xz) = U, Uy = Oand 0 = ()(Xz) (310)

3.2 The variational equation for the perturbed equations
of motion

When temperature effects are neglected, Squire [22]
has shown that, for incompressible and isoviscous
fluids, it is justified to limit the stability analysis to
two-dimensional disturbances. This result was ex-
tended to compressible but still isoviscous fluids by
Lin [23]. In the case of a variable viscosity, Sukanek
et al. [21] have proved that Squire's theorem is valid
when applied to the momentum equation but fails for
the energy equation. Consequently, a correct analysis
should be conducted by considering three dimensional
perturbations. However, it appears from the works of
Goldstein [24] and Sukanek et al. [21] that, at least
for the Couette flow, the modes associated with the
energy equation are the most stable. Therefore and
also because the greater numerical complexity of the
three dimensional problem, we shall restrict ourselves
to the two dimensional case. It follows that the dis-
turbances p’, u; and ¢’ will be of the form

S =X, X, 1) (3.11)

with 15 = 0.
Prescribing the temperature and the velocity dis-
turbances at the boundary, expression (2.34) of the
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variational principle becomes:

. . { (?UE)) (Juoz ol
ol =9 1+ Uy !
‘ jfg( P A
Sug, Supa Cfouy Quy
+ UL - U +—u’w+/t e o
(("‘,X] ! PXl 2/ L(aXl CXE)
o uor 0 000
éxX, 0

+RB (@ &g ax,
g cU <6u1 Clzlz P
Q(QXZ CXZ (:;Xl

11{3 cUN\?
R 7
+g<<§£+ 6u5>2+ 1<cu1 . Ou7>2>+g00<% )
X, 28X, X, 06X, G
cU [féuy  dub\ 8 [0U 1
(755 (9‘312 i ﬁ) 0 (53&—2) ) } " 0RB,
/{0t \* a0\ 1 a0 oy
X {i((b_j&l) +(axz> )“L()rxz ax, e=20)
+(0, (;XUZ) C 00>DdrdQ:0; (3.12)

in this expression, we have for simplicity omitted all
the terms giving a zero contribution to the Euler-
Lagrange equations. It can be seen that the latter are

yields the perturbed balance equations, it is more
convenient to build up a principle which gives the
Orr-Sommerfeld relations. This procedure reduces the
number of independent variables from three to two,
for instance u; and 8. It rests on the expansion of
the quantities ui(i = 1,2),# and p’ in the following form:

up = i{X)expin{X; — c1)), {3.14)
0 = B(X)explin( X, — c1)), (3.15)
P’ = p(Xs)explia(X, — c1)). (3.16)

According to the mass balance equation (3.7), the
amplitudes 4; and &, are related by:
. l daz
, 3.17
" OC d)iz ) ( )

or, in a more convenient form.

d
i1y :EDW where D= —— and W = ii,.
% dX

2

{3.18)

Using (3.13) and substituting (3.14) to (3.16) in (3.12)
gives an expression depending on iy, i, p and 0.
Eliminating p and i, by means of equations (3.8) and

(3.17) and introducing the new set of variables
O =i, {=¢gbU and X, =Y (3.19)

yields finally the following expression for (3.12}:

“+ 1
8l = 5J (19(R[(U—C} 2> WoW +DWDW,) — WoDUDW] ———((U~C}Oo+ WoDf)

-1

1
0B {_ (D) +0%@?] + — @01)@ @D@DO

(99}

B, 0

2 ofo o)

1 1 >
+g<E 2 W+ 2 WD Wo—D*W) + 42’ DWDWo — 2 (DZW)2> — 2DWD[g(D*Wy + a2 Wy)]

3DU 2
—C{ZDG)ODW += ~®2 +5[®(D2W+a2WO) - aZW®O]+< —0>®0<D2W W+

2 6?

identical with the equations (3.8) and (3.9) when the
subsidiary conditions

oy = Uy, upr = th, o =04
are introduced. The continuity equation (3.7) is not

obtained but is used as a subsidiary condition to
determine the value of Ay, it is found that

A= —p. (3.13)
It must be observed that if it is desired to obtain the
continuity equation as an Euler-Lagrange equation, it
suffices to vary (3.12) with respect to Ay.

3.3 The variational equation for the Orr-Sommerfeld
relations
Instead of constructing a variational criterion which

)

+2WD(®ODC))dY =0 (3.20)

After making use of the subsidiary conditions:
@0 S @.. W() = W
and taking the variations with respect to W and ©

respectively, one obtains the following Euler-Lagrange
equations:

DX(gD*W)—20*D{gDW) + o*(D*g)W
+a*gW +iaR(D*UYW — ixR(U — o)(D* — P )W
+{D* 4+ O =0, (321
(D?— 2@ —(B,ODU — iaPAU - c)®
—iaP,WDO—2BAD? +a )W = 0 (322)
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which are the Orr-Sommerfeld equations of the
problem.

The complete solution is obtained by adding the
boundary conditions:

W=DW=0=0 at Y=+1. (3.23)
3.4 Formulation of the eigenvalue problem

To obtain an approximate solution of the stability
problem, the self-consistent method proposed by
Glansdorff and Prigogine [2] will be applied. This
procedure is a generalization of Rayleigh-Ritz’s tech-
nique. Like this one, the self-consistent method is
closely related to the Galerkin’s method [25,26] and
is even equivalent when the trial functions are linear

expressions of the form
n
o= Z a; fi
i=1

where the a;’s are unknown constants while the fi’s are
given a priori and satisfy the boundary conditions.

Returning to the Euler-Lagrange equations (3.21)
and (3.22), let us assume that their solutions are
approximated by

W= i; a f(Y), (3.24)
W, = éjl aio f(Y), (3.24)
e = ,-:il d;py(Y), (3.25)
Qo = ,»i diop(Y). (325"

According to the self-consistent technique, W and W,
(respectively @ and @) are taken to have the same
dependence with respect to the independent variable Y';
the functions f; and p; constitute a complete set of
functions obeying the boundary conditions of the
problem, i.e.

fi=Dfi=0and p;=0at Y= +1, (326

the a;’s and the d;’s are the unknown constant coeffi-
cients. After substituting the trial functions in expres-
sion (3.20) of the functional I, the a’s and b/’s are
determined by the stationary conditions:

al(aiy aio, dj7 dj()) _

0 i=1,... .
” i=1,...,n, (327
ol(a;, aio, dj, djo)
) i=1....n (3.28)

After that all the derivations have been performed,
index 0 is dropped and one is left with a system of

n+m homogeneous equations which can symbolically

be written as:
a
A—cl). =0
(A—cD <d>

A is a matrix whose elements are made up of com-
bination of integrals of f; and p;, I is the identity
matrix while a and d are vectors with components
ai,...,a, and dy, ..., d, respectively. Non trivial solu-
tions of (3.29) exist if and only if the secular equation

det(A—cI) =0,

so that we are faced with an eigenvalue problem.
According to (3.14)—(3.16), the flow is unstable if the
imaginary part, c;, of ¢ is positive. In the next section,
we apply the foregoing analysis to two specific
examples: the isothermal plane Poiseuille flow and the
plane Couette flow with variable viscosity.

(3.29)

4. THE ISOTHERMAL POISEUILLE FLOW

In order to test our numerical methods, we first treat
the problem of the stability of a Poiseuille flow between
two infinite parallel planes at the same temperature.
All the fluid characteristics like density, heat conduc-
tivity and viscosity are supposed constant. Moreover,
the temperature perturbations are assumed to be
negligible.

Under these restrictions, the functional (3.20) re-
duces to:

+1
I= f {ich[(U— )o®WoW + DW DWy)— Wo,DUDW]

-1

1
+§a4W2 +a?W(2D* Wy~ D?*W) + 4a2DWDW,

1 2 2 2 2
— (D*W)* —2DWD(D*Wo+a*Wo) Y (4.1)

with
U=1-Y2 4.2)

The Euler-Lagrange equation resulting from arbi-
trary variations of W is the well-known Orr-Sommer-
feld relation
( D2 _ 0(2)2 w

—iaR[(U—c)(D*— o)W —-WD*U] =0. (4.3)
Let us expand W and W, in the form

n

W= '; afi(Y) Wo= Y ainfi(Y)

i

(4.4)

i=

where the f;’s are orthogonal functions used earlier by
Reid and Harris [11] and Chandrasekhar [10]. The f’s
are solution of the eigenvalue problem:

D*+a%fi=0 fi(x)=Df(£1)=0



662

and are given by

- cosh{4;Y) cos(z,Y)

e 45
cosh A; COS A; @)

where the 4;s are the roots of
tanh 4; +tan 4; = 0. {4.6)

The orthogonality conditions satisfied by the f's are

+1
f Y} fAY)dY = 20;;. (4.7)

-1

After rather long and fastidious but elementary
manipulations, one obtains the following secular

equation:
iA
det [C’ 1 (B—l>~ cr} =0
xR

where A, B and C are square matrices whose elements
are given by:

Ay = a*FO+ 22 Fy 4 F2 +ad(FO~F3%)  (48)
Bl‘j == Otzl/i_?0+ Vi}l—Dino (49)
Cyj = *FS0+ Fi! (4.10)

with

+1 +1
F = f fefpdy oy = j DU frfpdy
1 -1

+1
Vi = j UfefpdY mm=0.1.2
1

where f* stands for d"f;/dY” (n = 1,2) while f;° rep-
resents the function f; itself.

Integrals are determined numerically by the Gauss
procedure, The inverse of the matrix C is evaluated by
means of the Gauss—Jordan technique while the eigen-
values are obtained by using the Q.R. algorithm. All
the computations are performed on the IBM 370 com-
puter of the University of Liége.

(. LeBoN and HUNG NGUYEN

The imaginary part of the eigenvalues has been
calculated for 05 < ¥ < 1-5and 100 < R < 50000, The
number of terms in the expansion (4.4) has been
limitated to n = 17, In Table 1 are reported the results
corresponding to R = 250 and R = 3000 with in both
cases x = |.

Table 1. Convergence of the imaginary part ¢; of the
stability parameter

2=1 R=250

o =1, R = 3000
n ¢ n ¢
2 —0-084652 2 - 0007130
3 —(-134329 3 —0-014451
4 —0-101212 4 —0:027913
) — 0102684 5 — 0065203
6 —0-103787 6 +0-008008
7 — (104066 7 +0-008164
8 ~ 0104153 8 +0-003589
9 —0-104190 9 —0-002149
10 - 0104209 10 —0-006694
1t —0-104228 11 —0-009211
12 —0-104223 12 —0-010085
13 —0-104230 13 —0-010222
14 —0-104230 14 —0-010272
15 —0:104227 15 —0-010287
16 —0-104244 16 —0-010420

17 —0-104295 17

—0-010364

The convergence is satisfactory as long as R does not
exceed 6000. For higher Reynolds numbers, the results
become less accurate.

Some particular values of R and ¢, giving neutral
stability as a function of « are reproduced in Table 2;
for comparison, the results obtained by Chock and
Schechter [13] using the Runge-Kutta technique are
also listed. It is seen that the results are very similar.

It is found that the critical Reynolds number R, and
the critical wave number o, are respectively given by

R.=57272 % = 1-02.

Table 2. Values of R and ¢, corresponding to neutral stability as a function of the

wave number x and comparison with the results of Chock and Schechter [13]

R

Cr

Lebon-Nguyen  Chock-Schechter

Lebon-Nguyen  Chock-Schechter

09 6969

696525
1 5770 5814-83
1-02 57272 577226
1-021 57275 5772:25
1022 5728 577547
1-026 5732 577561
1-05 5889 588997

0-240246 0-240812
0-261066 0-261233
(-263465 0-263936
(26388 0-264053
(-26400 0-264168
0264414 0264607

0-266418

0-265853
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Table 3. Critical Reynolds and wave numbers obtained by different authors

Method R, o
Thomas [27] Finite difference 5780 1-026
Orszag [12] Chebyshev polynomial
expansion 5772-22 102056
Chock and Schechter [13] Runge-Kutta 5772:225 10205
Platten [3] Local potential
variational technique 5600 < R, < 5900 ~1

Values proposed by other authors are presented in
Table 3. The comparison with our values reflects a
very good agreement. In particular, it appears that our
results are better than those of Platten, although in
both cases the self-consistent method was used. How-
ever, this is not surprising because both of the analyses
differ by the expressions of the functionals I, by the
choice of the trial functions and by the numerical
methods to determine the eigenvalues.

5. THE PLANE COUETTE FLOW WITH
TEMPERATURE DEPENDENT VISCOSITY

The fluid moves between two plates in relative
motion with a constant velocity v*. Both plates are at
the same temperature. The density and the heat con-
ductivity of the fluid are constant while the viscosity
depends on the temperature according to the ex-
ponential law (3.4).

The solutions of the basic stationary flow equations
are [28]:

f = B+Infasech?bY), (5.1}
U = 31 +etanh bY), (5.2)
where
B, B2
a= 1+§, bzsinh’l(g) ,
1+B,/8\?
€= ( B ) . (5.3)
The momentum balance equation yields

gDU = { = constant. (5.4)

Moreover the maximum shear stress which can be
applied to the walls corresponds to a Brinkmann
number equal to 18-152 [28].

—i(AY) 1Al (A2~ B!
— (B3 A3 —i(B3)~ B2
—i(CH YT (C3)1B*
— (D% 1A% — (DYDY

The variational equation to be considered is given
by the general expression {3.20) wherein the last term
must be dropped according to (5.4).

For the trial functions W and ©®, we choose linear
combination of the Chebyshev polynomials T;. In order
to satisfy the boundary conditions (3.26), we take:

W=73 afiY)+ 3 bglY) (5.5)
i=1 i=1
i=1 i=1
and likewise for W, and ®,, with
i2+3i i243i
Ji= T2i+3_( > +1)T3 +T' T, (57)
gi=Tair2—(i+ 1P +[((+1*~1]T, (5.8)
pi = T4 — T, gi= T~ Ty, (5.9)

it is easy to verify that
filx ) =Dfi(£1) = gi(+1) = Dgi(+ 1) =0

and
plF ) =gq(x1)=0

When Chandrasekhar—Reid functions are chosen for
the velocity disturbance, the numerical procedure is
unstable for values of B, smaller than 19, ie. precisely
in the physical region of interest. Therefore, we have
taken Chebyshev polynomials. Moreover, for uni-
formity reasons, we have selected the same functions
for the temperature disturbance.

Introducing (5.5) and (5.6) in the expression (3.20)
of the functional I and applying the self-consistent
method, we obtain the characteristic matrix,

— (A% 1t 0
0 —i(B*) D!
__i(C3)f 1cl (CB)—lDZ (510)

(D4)— I(DZ)T —i(D4)_ 1D3



664

G. LEBoN and HUNG NGUYEN

Table 4. Convergence of the imaginary part ¢; of the stability parameter

a=1 P =1
B =1 B, = 10 B, = 40
R = 10000 R = 40-000 R = 5000 R = 20000 R=238 R=9
AN 4] /
N
N
h \\
— N
2 —000353 —0-00088 +0-00353 +0-:00t15 +0-05164 +0-08727
3 +0-00152 +0-00030 +0:00675 +0-00276 —0-09773 +0:06057
4 +0-00291 +0-00364 —0:00434 +0-00364 —0-04726 +0-04927
5 —0-00181 + 000462 —0:02369 +0-00394 —002291 +0-04928
6 —0:00191 +0-00048 —0-01308 +0-00295 —0:02031 +0-04947
7 —0:00281 +0-00761 —0-02666 +0-00306 -0:02056 +0-04950
Table 5. Values of R and « giving neutral stability for various assigned values of B, and P,
B, =1 B,=5 B, =15
P=1 P.=5 P=10 P=1 P.=5 P=10 P=1 P=5 P=10
R
1 \\
N
06 11310 9060 9415 6470 6085 4700 4275 4270
08 19530 9690 7650 7970 5270 4940 4615 4135 4070
09 17850 9400 7360 7665 4950 4625 4595 4130 4055
1 16580 9390 7290 7570 4750 4430 4550 3880 3805
11 15605 9690 7462 7680 4670 4345 4530 3720 3640
1-2 14870 10445 7975 8025 4715 4370 4490 3635 3555
13 14330 12015 9125 8670 4915 4535 4560 3635 3550
14 13955 13025 12030 9830 5360 4925 4770 3735 3645
16 13665 12630 9300 8470 6030 4515 4400
1-7 13760 12690

superscript T denotes transposition, the explicit ex-
pressions of the matrices A', B, C' and D' (i=
1, 2, 3, 4) in terms of the functions f;, g;, p; and g; are
given in the appendix. The eigenvalues of this matrix
are the parameters ¢ of the stability problem; as above,
thgy are determined by the Q — R method.

When more than seven terms are used in the ex-
pansions (5.5) and (5.6), the results lose any significance
because of numerical instabilities. In Table 4 the values
of ¢; are reported for some values of the parameters
o, P*, B,and R. The convergence is not very satisfactory
especially for Iow values of B,. Nevertheless, there is
no problem to define unambiguously the stable (¢; < 0)

* P, is the Prandtl number; it is defined by

PR '= ”
¥

where y* = A/pc, is the heat diffusivity.

P =

and the unstable (¢; > 0) region. For instance, it is clear
that in the case B, =10, the system is stable for
R < 5000 and unstable for R > 20-000. Likewise for
B, =40, it is seen that there is stability as long as
R < 8 and instability for R = 9. Of course, the latter
case is purely academic since the maximum shear
stress corresponds to B, = 18-152.

Taking five terms in the developments (5.5) and (5.6)
and fixing the Brinkmann and the Prandtl numbers,
we have computed the Reynolds number corresponding
to neutral stability for various assigned values of x
(see Table 5).

We have also derived the critical values of the
Reynolds and the wave numbers for B, =1, 5. 10, 15
and 40 when the Prandtl number takes the values 1. 5
and 10. Due to the lack of accuracy of the numerical
procedure, these results must be interpreted as giving
the order of magnitude.
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Table 6. Critical values of R and « for various assigned
values of B, and P, and comparison with the results of
Sukanek et al. [21]

Lebon-Nguyen Sukanek et al.

B, P, R, % R, o
1 1 13665 1-60
5 9370 0-95
10 7290 1
5 1 7570 1
5 4670 1-10
10 4340 1-15
10 1 5160 110
5 3835 1-20
10 3700 120
15 1 4490 1-20 3500 096
5 3625 125 3475 0-98
10 3540 1-25
40 1 44 08 116 0-47
5 47 08 68 065

The results are reproduced in Table 6 together with
those obtained by Sukanek et al. [21]. These authors
expanded W in terms of the Chandrasekhar—Reid
functions and @ in terms of Fourier’s series; n was
taken equal to four. It must however be pointed out
that their expansion for ® does not obey the boundary
conditions ©(+ 1) = 0! Moreover, their characteristic
matrix with complex elements is mapped into a real
one by a suitable transformation operator. Due to
numerical instability, Sukanek et al. were not able to
compute R, and «, for B, lower than 15. In our work,
by using Chebyshev polynomials and working with
complex variables, we extended this limit to B, = 1.
Although our numerical values are different from those
of [21], especially for B, = 40, we observe the same
general tendency. For a fixed Prandtl number, the
critical Reynolds number increases when the Brink-
mann number decreases; at B, = 0 (non-viscous fluid),
it is reasonable to expect that R, = oo so that the
system remains indefinitely stable. On the other hand,
when the Brinkmann number is given, R increases
generally when the Prandtl number decreases.

6. CONCLUSIONS

The purpose of this work was twofold: extend the
variational principle of Lebon and Lambermont to
stability problems and apply it to specific examples.
The approximate solutions were obtained by using the
self-consistent technique. Like any variational method,
it is rather sensitive to the choice of the trial functions.
For the isothermal Poiseuille flow, the amplitude of
the disturbed velocity was expressed in terms of the
Chandrasekhar—Reid functions; the solutions obtained
converge quite well and are in fair agreement with

those given by other authors. In the case of the
Couette flow with temperature dependent viscosity, the
disturbed velocity and temperature were expanded in
terms of the Chebyshev polynomials. However, because
of lack of convergence of the solutions, the neutral
stability curves and the critical values of the parameters
could not be determined with great precision. There-
fore, concerning the Couette flow, our results must be
considered as a first estimate. Nevertheless, in our
opinton, our contribution may be useful in that it gives
a general pattern for the flow and constitutes a first
step for further studies of the problem.

Acknowledgement — The authors wish to thank Dr. Lamber-
mont for valuable remarks on the manuscript.
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STABILITE HYDRODYNAMIQUE PAR METHODES VARIATIONNELLES

Résumé—On propose un principe variationnel général pour I'étude de la stabilité linéaire des écoulements
stationnaires et non-isotherme. On montre que les équations d’Euler-Lagrange du critére variationnel
sont les relations d’Orr—Sommerfeld du probléme de stabilité. La théorie générale est appliquée & deux
exemples. On considére tout d’abord I'écoulement isotherme de Poiseuille entre deux plans paralléles
infinis: en utilisant la méthode “self-consistent” de Glansdorff-Prigognine; on trouve un nombre de
Reynolds critique du méme order de grandeur que celui obtenu par d’autres auteurs. Comme second
exemple, on étudie la conséquence d’une viscosité fonction de la température sur la stabilité d’un écoule-
ment de Couette plan. On montre que pour certaines valeurs de parameétres, I'écoulement devient instable.
Nos résultats sont comparés avec ceux obtenus par Sukanek er al. qui furent, 4 notre connaissance, les
premiers a traiter ce probléme.

EINE STUDIE UBER HYDRODYNAMISCHE STABILITAT BEI VARIATIONSMETHODEN

Zusammenfassung—Es wird eine allgemeine Variationsgleichung fiir die Untersuchung der linearen
Stabilitdt von nichtisothermen Fliissigkeitsstromungen vorgeschlagen. Es wird gezeigt, daB die Euler-
Lagrange-Gleichungen des Variationskriteriums die Orr-Sommerfeld-Bezichungen des Stabilititsprob-
lems sind. Die allgemeine Theorie wurde auf zwei spezifische Beispiele angewandt. Erstens betrachtete
man die isotherme Poiseuille-Strémung zwischen zwei unendlichen parallelen Platten. Man wandte die
selbstkonsistente Technik an, die von Glansdorff und Prigogine eingefithrt wurde und fand heraus, daB
die kritische Reynolds-Zahl von der gleichen GroBenordnung ist wie Werte anderer Autoren. Als
zweites Beispiel untersuchte man den Einflu einer temperaturabhiingigen Viskositidt auf die Stabilitit
einer ebenen Couettestromung. Es wird gezeigt, daB fir gewisse Parameterwerte die Stromung instabil
wird. Unsere Ergebnisse wurden mit denen von Sukanek verglichen, die unseres Wissens die ersten sind,
die dieses Problem behandeln.

UCCJIEAOBAHUE TMAPOAUHAMMUYECKON YCTOMYMBOCTH
BAPMAUNOHHBIMU METOOAMU

Aunotauns — [Ipennoxeno obiuee BapMauMOHHOE ypaBHEHHE /151 H3YHEHUs IMHERHON YCTONYMBOCTH
HEU3OTEPMHUECKUX TeueHHH kunkoctu. lokaizano, yTo ypaBHenns Diinepa-Jlarpanxka BapMauMoH-
HOTO KPHTEPHA NpeiacTaBasioT cobok cooTHowenus Oppa-3ommepdenbaa B 3anade 06 ycToiuu-
eocTH. ObLas Teopus NPUMEHAETCA K ABYM YaCTHbIM cily4asm. B mepsom ciyuae paccmatpusaetcs
nioTepmuyeckoe Teyenue Ilyaseiins mexay AByMA GECKOHEUHBIMU NApalIE]bHLIMU TUIOCKOCTSMH.
C nomMoLub0 METOAA CAMOCOTIaCOBaH U, npennoxertoro Knancaopdom u MprroxubeiM, HaitaeHo,
YTO KPUTHUECKOE YHCIIO PeliHOMbLACA MMEET TOT Ke MOPSAOK BEMYUHbI, 4TO U €rO 3HAYEHUA, MOy~
YeHHble ApYrumMur aBTopaMu. Bo BTOpOM ciyuae uccneayercs BAMRHME BSA3ZKOCTH, 3aBHUCAUIER OT
TEMMEpaTypbl, HA YCTOHUMBOCTL niockoro Tedenns Kystra. TokazaHo, 4To npu HEKOTOPLIX 3Haye-
HUSAX NapaMeTPOB TEYEHHE CTAHOBHTCA HeycTOM4MBBIM, Hawu pe3yibTaTbl CpaBHHBAIOTCA C AaH-
HbiMY CyKaHeka M ApYruX. KOTOpbie, 10 HAUIEMY MHEHWIO, ABIAIOTCA MEPBLIMU ONYEINKOBAHHBIMH
LaHHBIMM 10 ITOH npodiieme.
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